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SIMULATION AND FLIGHT STUDIES O F  AN APPROACH 

PROFILE INDICATOR FOR VTOL AIRCRAFT 

Gene C. Moen 

Langley Directorate, U.S. Army Air Mobility R&D Laboratory 


and Kenneth R.Yenni 

Langley Research Center 


SUMMARY 


Simulation and flight investigations were conducted by using a method of providing 
supplementary information to the pilot in conjunction with a closed-circuit-television dis­
play during a VTOL (vertical take-off and landing) instrument final approach including 
deceleration and hover. The supplementary information included range, c ross  range, 
ground speed, altitude, and rate-of-climb e r r o r  and was displayed on an instrument called 
an approach profile indicator. The display was arranged to provide both quasi-command 
and situation information. Pilot comments indicated that the approach-profile-indicator 
display concept in conjunction with the closed-circuit television resulted in a decreased 
pilot workload and an increase in  pilot confidence. Also, the resul ts  indicated that the 
approach profile repeatability was significantly improved because of the ground-speed and 
altitude information provided on the approach profile indicator. 

INTRODUCTION 


The benefits of an out-the-window visual scene are well documented, and the poten­
tial  benefits of duplicating the real-world scene under instrument conditions are obvious. 
In practice, however, there a r e  numerous deficiencies in all state-of-the-art real-world 
display systems. For example, real-world systems are generally two-dimensional, have 
narrow fields of view, and offer relatively low resolution and contrast. In addition, they do 
not provide adequate information for flying prescribed V 1  dL approach trajectories that 
are desirable from the standpoint of minimizing fuel, noise, and airspace requirements for  
advanced terminal-area operations. The lack of information was confirmed in a recent 
flight investigation which used a closed-circuit-television (CCTV) system as a research 
tool for  studying the effects of variations in resolution, field of view, magnification, sensor  
look angle, and s o  forth. Unpublished resul ts  from that study indicate that the pilots had a 
tendency to descend and decelerate too late in  the approach, which caused periods of high 



cockpit workload and implied a requirement for range, altitude, and ground-speed infor­
mation in  order  to perform the decelerating approach task in a satisfactory manner. 

The purpose of the present investigation was to develop and assess a novel method 
of providing supplementary information in conjunction with a real-world display. The 
approach parameters  of range, c ros s  range, ground speed, altitude, and rate-of-climb 
e r r o r  were displayed in a combined manner on an instrument that is referred to as an 
approach profile indicator (API). The concept was adopted from a manned spacecraft ren­
dezvous display (ref. 1) and was unique in that the display needles were arranged to pro­
vide quasi-command information in addition to situation information. Specifically, when 
the range, ground-speed, and altitude needles were alined, the aircraf t  was on the desired 
ground-speed and altitude profiles; when the needles were misalined, the direction and 
magnitude of the misalinement provided cues to achieve the desired profiles. By combin­
ing the information in  this manner, the instrument scan problem could be reduced, which 
effectively would reduce the pilot workload. 

Simulated instrument approaches and hovers using the API in conjunction with a 
CCTV display were conducted on a fixed-base simulator and on a single-rotor heli,copter. 
The purpose of this paper is to describe the API display concept and to present the resul ts  
of the simulator and flight tests.  

SYMBOLS 

The units used for physical quantities defined in this paper a r e  given in both the 
International System of Units (SI) and U.S. Customary Units. The measurements and cal­
culations were made in U.S. Customary Units. Factors relating the two systems a r e  given 
in reference 2. 

a constant in range channel, m 1/2/sec (f t ec) 

b constant in range channel, m (ft) 

constant in range channel, m/sec (ft/sec) 

d constant in altitude channel, m1/2/sec (ft1/2/sec) 

h altitude, m (ft) 

kl,k2,kg scale attenuation constants (defined in appendix C) 
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X,Y 7z position coordinates in rectangular coordinate system (fig. 4), m (ft) 

Y glide slope, deg 

Subscripts: 

e e r r o r  

f final condition for variable 

fs meter  full-scale value for  variable 

initial condition for  variable 

A dot over a quantity indicates the f i r s t  derivative with respect to time. Two dots 
over a quantity indicate the second derivative with respect to time. 

Single and double primed quantities indicate the signal processing input and output 
voltages, respectively. 

DESCRIPTION OF EQUIPMENT 

Approach Profile Indicator 

The API, shown in figure 1, consisted of five edge-reading meters  which were 
mounted in a cluster directly below the CCTV display in both the simulator (fig. 2) and the 
flight vehicle (fig. 3).  The top meter  provided the pilot with an indication of linear cross-
range e r r o r s  with respect to the extended runway center line. The remaining four meters  
were vertically mounted and presented (from left to right) rate-of-climb e r r o r ,  altitude, 
range, and ground speed along the extended runway center line. The coordinate system 
containing these parameters  is shown in figure 4. The altitude, range, and ground-speed 
meters  were marked to provide situation information and provided low-gain, quasi-
command information to the pilot. In i t s  use as a quasi-command indicator, the range 
meter  was considered to be the pr imary indicator, and the pilot 's task was to control the 
ground speed and altitude in a manner which resulted in alining these two needles with the 
range needle. 

The range, altitude, and ground-speed scales  (fig. 1)were selected to correspond to 
nonlinear altitude and ground-speed profiles, which are described in a subsequent section. 
The nonlinear signal processing was done with analog computer components, which were 
packaged as shown in figure 5. Variations in the ground-speed profile were obtained by 
rescaling the l inear ground-speed meter .  The four ground-speed profiles (fig. 6) were 
investigated on the fixed-base simulator, and one profile was selected for  flight evaluation. 
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The rate-of-climb-error meter  differed from the other meters  in that i t  did not 
directly provide situation information to the pilots. This meter  was driven by a special 
e r r o r  function which, in effect, slaved this needle to the altitude needle. Specifically, a 
rate-of-climb e r r o r  caused the needle either to lead (if the sink ra te  was too high) or lag 
the altitude needle (if the sink rate was too low), and a proper ra te  of climb to maintain the 
prescribed altitude profile would result in the needles being alined. The sensitivity of the 
error signal was selected to provide a 2.5-cm (1-in.) separation of the needles for a 
15O-m/min (500-ft/min) sink ra te  e r ro r .  

Simulator Description 

Initial tes ts  were conducted on a fixed-base, VTOL simulator which consisted of a 
cockpit, a landing terrain scene generator (LTSG), and a CCTV system for presenting a 
real-world scene to the tes t  subject. Included in the cockpit (fig. 2) were the API, sim­
ulated helicopter controls, panel-mounted displays, 63.5-cm (25-in.) CCTV monitor, and 
virtual image lens.  The edges of the CCTV monitor were masked to simulate the 35.6-cm 
(14-in.) CCTV monitor used in the flight vehicle. The monitor was installed with the long 
axis of the cathode ray  tube (CRT) vertical in order  to obtain an increased vertical  field 
of view. One difference between the simulator and flight-vehicle cockpit was the virtual 
image lens, which allowed the pilot's eyes to be focused at  infinity. The cockpit was shared 
with other simulation programs requiring the lens,  and i t  was not practical  to remove and 
replace the lens on an intermittent basis. It was believed, however, that this feature would 
not significantly affect the results of the study. The visual scene was obtained from the 
six-degree-of-freedom LTSG shown in figures 7 and 8. Elements of the LTSG included a 
CCTV camera,  a servo-carriage system, and a 1/300-scale model airport .  

The helicopter mathematical model used in  the simulation is presented in refer­
ence 3. The equations of motion were solved in a Control Data 6600 computer system 
which provided signals through a digital-analog interface for driving both the API and 
LTSG. 

Flight Equipment 

The single-rotor helicopter, shown in figure 9, was used as the flight-test vehicle. 
This helicopter was equipped with production automatic stabilization equipment (ASE). Two 
channels of the ASE provided attitude stabilization about the respective pitch and roll axes. 
A third channel, which was slaved to the compass system, provided yaw-rate damping and 
a heading-hold feature. 

A high-resolution (946 scan lines), black-and-white CCTV system was installed 
on the aircraft. The camera  was located on the left side of the aircraf t  nose and had a 
depressed look angle of 5' with respect to the helicopter longitudinal axis. The camera 
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zoom lens was set for  a 29O field of view, which provided a unity magnification at the CCTV 
display. The 35.6-cm (14-in.) monitor was located 68 cm (27 in.) from the test subject 's 
eyes and was installed so  that the longest dimension of the CRT was  vertical. The selec­
tion of the electro-optical parameter  values for field of view, magnification, aspect ratio, 
and so forth, was based on the resul ts  of a pr ior  CCTV display study. 

In addition to the CCTV display, the evaluation pilot's (test subject's) instrument 
panel (fig. 3) included the API and three additional vertical s t r i p  instruments located 
peripherally around the monitor. The three s t r ip  instruments provided the test subject 
with airspeed, rate-of-climb, and radio-altitude information. Although these three strip 
instruments were active, pilot comments indicated that they did not use them when the API 
was used. Curtains were placed around the evaluation pilot's station to simulate an instru­
ment flight condition. 

A ground-based precision radar  was used to track the helicopter and provided the 
position and velocity signals to the API. A description of the radar  is contained in 
appendix A. 

PILOT'S TASK 

The task was to take control of the helicopter (or simulator) and fly a descending, 
decelerating approach from a predetermined set  of initial conditions and using prescribed 
speed and altitude profiles, terminating in a 12-m (40-ft) hover over a landing pad. The 
initial par t  of the task varied slightly, depending on whether the approaches were flown in 
the fixed-base simulator o r  the helicopter. In the simulator, all approaches were started 
from fixed initial conditions; specifically, range of 3.04 km (10 000 f t ) ,  altitude of 274 m 
(900 f t ) ,  and ground speed of 80 knots. The task was to continue the approach, holding the 
initial conditions for altitude and ground speed until the range needle matched the altitude 
needle. At that point, the pilot initiated the letdown along the glide slope, holding the 
ground-speed initial condition until the range needle matched the ground-speed needle. 
From that point on, the task was to control the altitude and ground speed in a manner to 
maintain alinement of the respective needles with the range needle until the hover condi­
tion was achieved (zero range and ground speed, 12-m (40-ft) hover). 

In the flight program, the initial conditions were se t  up by the safety pilot who con­
trolled the aircraf t  on the downwind leg and initiated the base turn. During the base turn, 
the tes t  subject was given control of the aircraf t  which had a nominal initial condition of 
243 m (800 ft) altitude, 80 knots airspeed, and a range in excess of 2 nautical miles. After 
taking control of the aircraft ,  the pilot's task was to continue the base turn,  holding the 
altitude and airspeed initial conditions until he made visual contact with the runway by 
means of the CCTV display. After making visual contact with the runway, he then contin­
ued the approach in the same manner as in the simulation task. 
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The approaches flown without the API had a different task definition. Without the 
API, there  was no precision guidance information for the test subject; therefore, the task 
was to fly a descending, decelerating approach which felt "comfortable," using the infor­
mation from the CCTV display and the three peripheral instruments. 

PROFILES 

The ground-speed profiles which were investigated are shown in figure 6. In the API 
concept, each profile represents a different scale  factor on the ground-speed meter  and is 
defined by the following equation: 

where k is in m/sec (ft/sec). Equations for determining the constants a, b, and c 
a r e  derived in appendix B. Equation (2) defines the corresponding deceleration profiles 
(fig. 10) associated with each of the ground-speed profiles. This equation is obtained by 
differentiating equation (1)and by substituting equation (1)into the differentiated expres­
sion to give 

where x is in m/sec2 (ft/sec2). 

Although an infinite number of possible ground-speed profiles elrist, equation (1)was 
found to provide an acceptable deceleration profile and to contain several  desirable fea­
tures  for programing the API concept. F i r s t ,  the deceleration profiles defined by equa­
tion (2) feature a gradually decreasing deceleration level. This characterist ic is s imilar  
to a constant-attitude-type deceleration profile. Flight-test resul ts  (ref. 4)indicate that 
deceleration profiles which require a nearly constant attitude throughout the approach are 
readily accepted by pilots and provide an easier  pilot task during the final transition to 
hover. In addition, the shape of the ground-speed profile permits  an increasing display 
sensitivity, which is quite desirable for controlling range and altitude as the helicopter gets 
closer to the pad. 

The API altitude profile (fig. 11)intercepts the 6 O  reference slope at  range values of 
zero  and 3.04 km (10 000 ft) and exhibits a slight concave-up characteristic. This pro­
fi le was selected because i t  approximates a 6' straight-line glide slope, which has been 
used for a number of VTOL instrument approach studies, and because of the concave-up 
feature,  which is characterist ic of VFR approaches. Equations for  the altitude profile 
and signal processing are given in appendixes B and C, respectively. 
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RESULTS AND DISCUSSION 

F’ixed-Base Simulation 

One hundred and eleven approaches were flown on the fixed-base simulator using 
four NASA research pilots as tes t  subjects to investigate the CCTV display by itself and 
the CCTV display with the API programed for four different ground-speed profiles. A 
summary of the display configurations, together with the number of approaches flown by 
each test subject, is shown in the following table: 

Display configuration 

CCTV only 

140-knot ground-speed profile (API and CCTV) 

120-knot ground-speed profile (API and CCTV) 

110-knot ground-speed profile (API and CCTV) 

100-knot ground-speed profile (API and CCTV) 

Total 

Data runs made by Totaltest subject data 
A B C D runs 

6 6 6 18 

15 9 9 33 

10 7 17 

8 6 14 

14 8 7 29 

29 33 14 35 111 

During each approach, the profile variables of altitude, ground speed, and cross  range were 
recorded as a function of range. These profile plots were then p7rocessed to obtain arith­
metic average values and standard deviations at selected range intervals. For the purpose 
of the study, the arithmetic averages provided an indication of how well the test  subjects 
tracked a particular parameter,  and the standard-deviation envelopes provided an indica­
tion of the test  subjects’ repeatability in performing the task. The data were processed 
f i r s t  to obtain the composite resul ts  from all test  subjects for each display configuration. 
After obtaining the composite results,  the data from the baseline test subject were then 
processed to obtain the comparative resul ts  from an individual tes t  subject. Test  sub­
ject D was chosen as the simulation baseline tes t  subject because he flew all tes t  cases .  

The simulation results are presented in  figures 12 to 17. Clearly, i t  is not 
particularly instructive to directly compare the resul ts  from the combination display 
(CCTV and API) (figs. 12 to 14) with the resul ts  for the CCTV only (fig. 15) because the 
two displays were flown using different tasks. However, in reviewing the resul ts ,  some 
general  observations can be made. Specifically, with the combined display (CCTV and 
API), the standard-deviation envelopes for the ground-speed and altitude profiles were 
significantly smaller  throughout the approach and demonstrated a smooth convergence 
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toward the parameter  hover value (e.g., 12-m (40-ft) altitude and zero ground speed). A 
comparison of figures 14, 15(e), and 15(f) indicates that the API did not improve pilot per­
formance in controlling the cross-range parameter.  Test subjects'  comments indicated 
that they perferred to use  the real-world display for  controlling cross-range position 
rather  than to use the cross-range meter  on the API. In short ,  the real-world display 
presented a more compelling cross-range-error  cue to the test subjects than did the 
cross-range meter.  In addition, the test subjects commented that e r r o r s  in c ross  range 
did not demand immediate and accurate correction because they could extrapolate a cor­
rection and determine from the real-world display that they would be on the correct c ross -
range t rack in time to complete the approach. 

The simulation resul ts  were further analyzed to determine the average standard 
deviation for  each of the envelopes shown in figures 1 2  to 15. The a rea  of each standard-
deviation envelope was measured with a planimeter and the average standard deviation was 
computed by dividing the resulting area by the range involved with the test .  

The average standard-deviation resul ts  are shown in bar-graph form in figures 16 
and 17. The bar  graphs on the left represent the average standard-deviation values of that 
parameter  for the entire approach (2896 m (9500 ft)), and the bar  graphs on the right 
represent the same values averaged over the last  914 m (3000 ft)  of the approach. The 
obvious results shown in these figures are that the ground-speed and altitude information 
provided by the API significantly improved the test  subjects ' repeatability. Furthermore,  
the resul ts  indicate that the information provided by the cross-range meter  was of no 
benefit in performing the task and confirm the tes t  subjects'  comments that the cross-range 
meter  was not used by them during the approach. These resul ts  also indicate that the best 
overall repeatability was obtained when the API was configured for  the 110-knot ground­
speed profile. 

Flight Program 

A total of 40 approaches were  flown by two NASA research  pilots and one U.S. Navy 
tes t  pilot. Of these approaches, 32 were flown using the combination display (CCTV and 
API) configured for  the 100-knot ground-speed profile, and the remaining 8 approaches 
were flown by test subject A, using the CCTV display only. Only one ground-speed profile 
(100 knot) was flight tested on the API because of flight-time limitations imposed on the 
aircraf t  by the primary research program. The selection of this profile was based on the 
simulator test subjects'  comments that the 100-knot profile was the easiest  and most gentle 
profile to control in the simulator. A summary of the flight tes t s  is shown in the following 
table: 
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Data runs made by Total 
Display configuration test  subject -

CCTV only 


100-knot ground-speed profile (API) ::i

. . . ~  

The flight-test data were processed in a manner s imilar  to that used for the simu­
lation data. Arithmetic-average and standard-deviation values are shown in figures 18 
to 20. These resul ts  a r e  based on data from individual test  subjects instead of combining 
the data from all test  subjects as was done with the simulation results.  

Tes t  subject A was the assigned project pilot on a pr ior  research program and, as 
such, had flown approximately 300 approaches which used the CCTV display only. Thus, 
his resul ts  in this study represent the resul ts  from a test subject who was highly trained 
with the basic CCTV display system. A comparison of the average-standard-deviation 
values (figs. 2l(a) and 21(b)) shows that tes t  subject A's  repeatability improved from 20 
to 60 percent with the combination display. 

Test  subject B had no recent experience with CCTV displays except for 33 approaches 
flown in the simulator. As a resul t  of his simulation experience with the combination dis­
play, test  subject B requested that he be permitted to use a modified task during the flight 
program. H i s  suggested task modification, which he was permitted to use,  was to let the 
ground-speed needle lag the range needle by approximately 10 knots of ground speed. This 
task modification resulted in a higher average ground speed, as shown in figure 19(c). 
Even though the task modification was supposed to apply only to controlling the ground­
speed profile, the resul ts  indicated (fig. 18(c))that test  subject B also lagged the altitude 
needle, which in turn resulted in a higher arithmetic average for the glide-slope parameter.  
This task modification, however, demonstrated an operational flexibility in piloting tech­
niques which can be used with the APT concept. 

Test  subject E was a Navy test  pilot, highly trained in the aircraf t  type, but he had no 
pr ior  experience with either real-world displays o r  the API. H i s  resul ts  were consistent 
with the resul ts  from the other tes t  subjects except for the ground-speed profile during the 
last 200 m (650 ft) of the approach. This is the region in the approach where the aircraf t  
is in transition to the hover condition, and the standard-deviation envelope does not indicate 
a smooth convergence of the ground-speed parameter during this transition period. This 
is also the region in which the test  subject 's concentration shifted from the API to the real-
world display, and the lack of smooth convergence is probably indicative of the tes t  sub­
ject's lack of pr ior  flight training with real-world displays. 
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The cross-range resul ts  (fig. 21(c)) confirm the simulation resul ts  wherein the 
cross-range meter  did not improve pilot performance in controlling the cross-range 
parameter.  

Flight tests without the API were conducted under near-calm wind conditions; 
whereas, the flight tests with the combination display were conducted with head winds 
varying from 12 to 24 knots and from directions varying 45' to -45O relative to the run­
way heading. All approaches were initiated at 80 knots indicated airspeed, and the head 
winds caused a corresponding reduction in the value of the ground-speed initial conditions. 
In most cases ,  the tes t  subjects continued the approach at the reduced value of ground 
speed until they intercepted the programed speed profile. The pilots commented that this 
characterist ic in itself did not cause a piloting problem. 

SUMMARY O F  PILOT COMMENTS 

All test  subjects commented that the API significantly reduced the pilot workload and 
increased pilot confidence during the approach. They also indicated that the API provided 
an  effective means for  flying predetermined ground-speed and altitude profiles with a 
relatively high degree of repeatability. All test subjects in the flight-test program indi­
cated that the 100-knot ground-speed profile was too slow and resulted in coming to a near-
hover condition too far from the landing pad. They also thought that a faster  ground-speed 
profile would have eliminated this problem. (The simulation resul ts  indicated that the 
110-knot profile would be better.) 

In all cases ,  the test subjects preferred not to use the cross-range meter  fo r  cross-
range position cues. Instead, their preference was to obtain the cross-range information 
from the CCTV display. The probable reason for this comment was that the cross-range 
cues were far more  compelling on the real-world display than the corresponding cues from 
the cross-range meter.  

All tes t  subjects indicated that, throughout most of the approach, their  pr imary con­
centration was on the API; but, during the final stages of the approach, their concentration 
shifted to the CCTV display. Their estimate was that approximately 80 percent of their  
concentration was devoted to the API, with the remaining 20 percent devoted to the CCTV 
until they approached the hover condition, at which point the percentages of concentration 
reversed to 80 percent on the CCTV and the remaining 20 percent on the API. 

CONCLUSIONS 

An evaluation has been conducted on an electromechanical display that provides sup­
plementary approach profile information in conjunction with a closed-circuit-television 
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display. The approach profile indicator was designed to provide both situation and quasi-
command information to aid the pilot in performing an instrument final approach and hover 
task in a VTOL aircraf t .  From the simulation and flight tes t s ,  the following conclusions 
are indicated: 

1. The approach profile indicator, when used in conjunction with a real-world display, 
reduced the pilot's workload and increased the pilot's confidence. 

2. Approach profile repeatability was significantly improved because of the ground­
speed and altitude information provided on the approach profile indicator. 

3. The concept of structuring situation information to obtain quasi-command infor­
mation provided a desirable operational flexibility in  the piloting techniques used during 
the VTOL approach task. 

4. The cross-range information provided on the approach profile indicator was not 
used by the evaluation pilots because the same information was more  easily derived from 
the closed-circuit television and, as such, should be deleted from the approach-profile­
indicator concept when used in  conjunction with a real-world display. 

5. In flight, the 100-knot ground-speed approach profile resulted in too slow an a i r ­
speed at the hover transition point and increased the approach t ime unnecessarily. Pilot 
comment strongly indicated that a fas ter  ground-speed profile would be a significant 
improvement. The simulation results,  which included 110-knot profiles, support these 
comments. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
September 24, 1975 
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APPENDIX A 


DESCHPTION O F  TRACKING RADAR 


The GSN-5 precision tracking radar  measures  the position of a i rcraf t  in t e r m s  of 
slant range, azimuth, and elevation angles of the radar  antenna. Data from this spherical  
coordinate system are transformed into the rectangular coordinate system shown in fig­
u re  4. Transformed aircraft  data - both positions and r a t e s  - are transmitted to the air­
craft  on a narrow-band, frequency-modulated (FM) telemetry link. A passive corner 
reflector was mounted on the nose of the aircraf t  to prevent skin tracking. 

The GSN-5 is a K-band radar  and has an antenna beam width of approximately 0.5'. 
This radar  is capable of tracking from 0' to 30' in elevation and from 45' to -45' in azi­
muth. Position uncertainties in rectangular coordinates are shown in the following table: 

-
Range t- X I Y I z 

ft 

16.4 1 3.28 1 3.28 

4 13 150 36 118 2.5 8.2 3.2 10.5 

1 2  




APPENDIX B 

PROFILE EQUATIONS 

Equation (l),which defines the nominal ground-speed profiles, is repeated for  con­
venience as follows: 

where k is in m/sec (ft/sec). 

The constant b is a range offset distance (fig. 4) and is defined by the following 
equation: , 

b = - hf (B1)
tan Yo 

and is measured in m (ft). 

For the hover condition, k must equal zero when x = 0. It follows, therefore, 
that 

in m/sec (ft/sec). 

Furthermore,  the matching of the x and needles at full scale dictates that: 

Substituting for c and solving for a yields 

in ml/'/sec (ftl/'/sec). 

After developing the signal processing equations (appendix C), a mathematical rela­
tionship was developed which describes the altitude profile shown in figure 11. This rela­
tionship, which is valid over the region of interest  = 0 to x = xfS), is defined by the 
following equation: 
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APPENDIX B 


z = A(x- 2 \ l i ? - i / +  2b) + hf 

where z is given in m (ft) and 

A =  Xfstan yo 

Xf s - 26/-+ 2b 

The family of ground-speed profiles (fig. 6) and the altitude profile (fig. 11)were 
obtained by plotting equations (1)and (B4), respectively, for  the following conditions: 

hf = 12.2 m (40 ft) 

y
0 

= 6  0 


xfS = 3.046 km (10 000 ft) 


xfs = 100, 110, 120, and 140 knots 
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APPENDIX C 

SIGNAL PROCESSING 

The position and velocity signals received onboard the aircraf t  from the ground-
based radar  were voltages that were proportional (linear) functions of the measured 
parameters.  In formulating the display concept, analog circuits (fig. 22) were developed 
for  processing these proportional signals into a proper format for  displaying the respec­
tive parameters  on the API. 

Each circuit represents  the signal processing used for  that specific channel, and it 
should be pointed out that each channel (except for  the rate-of-climb-error channel) func­
tioned independently of the remaining channels. Specifically, the signal processing prob­
lem was to shape the output signals in a manner such that, when the aircraf t  was on the 
prescribed profiles, the needles would be alined on the API. 

Ground-Speed Channel 

Because of display sensitivity considerations, the ground-speed parameter  was dis­
played on the API as a l inear function of measured ground speed. Therefore, the signal 
processing equation for  this channel (fig. 22(a)) was 

where k* denotes the meter  displacement in percent of full scale  and kl  is a scaling 
constant. 

Range Channel 

Since the ground-speed parameter  was displayed as a linear function, the range 
signal was processed to obtain the nonlinear ground-speed profiles defined by equation (1). 
The signal processing equation for the range channel (fig. 22(b)) was 

x* = (z)(apGT3+ c) 

where x* denotes the range meter  deflection in percent of full scale. 

Altitude Channel 

The selection of the signal processing equation for  the altitude channel was based on 
a desire  to approximate a straight-line glide slope, which meant that the altitude equation 

15 




APPENDIX C 

should be of the same general form as equation (C2). During bench tests, i t  was discov­
ered that the signal processing equation given next, in addition to approximating a straight-
line glide slope, would resul t  in  a slightly concave-up altitude profile which approximated 
a s imilar  characterist ic found in VFR altitude profiles. 

The signal processing equation for  the altitude channel (fig. 22(c)) was 

where z* denotes the altitude meter  deflection in percent of full scale. 

Rate-of- Climb- Error  Channel 

The signal processing equation for  the rate-of-climb-error channel (fig. 22(d)) was 

'* h = Z" + k2he 

where f ~ *denotes meter  deflection in t e rms  of cm/(m/min) (in/(ft/min)) rate-of-climb 
e r r o r  and where 

h* e -- [z - t a n y x
0 3 

in m/sec (ft/sec). 

The 2'' t e rm,  which is the output voltage from the altitude channel, is used to slave 
the rate-of-climb-error needle with the altitude needle. The constant k2 represents a 
potentiometer for adjusting the display sensitivity (e.g., 150-m/min (500-ft/min) sink-
rate  e r r o r  was approximately equal to a 2.5-cm (1-in.) separation of the two respective 
needles). 

Cross- Range Channel 

The signal processing equation used in the cross-range channel (fig. 22(e)) was 

Y* = (,)k3Y 
where y* denotes the cross-range meter  deflection in percent of full scale and k3 is 
a scaling constant. 
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Figure 4.- Approach coordinate system. 
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Figure 20.- Flight results of cross-range profiles, 



c, 

c, 

c, 

W 

c, 

W 

S 

W 

W 

m 

--- 

Lc E Averaged over  
v- E Averaged over  l a s t  

2134 m (7000 f t )  30 - 914 m (3000 f t )  

.r 

U> 

15 	 C C T V  
only! A

: LW 

> o 0 ' r,fi TI i.. 
(a) Altitude. 

V 
v) 

Avera ed over  2896 m (9500 f t )  
._
Lc Averaged over  l a s t  

excep? i n  t h e  case  o f  the 
0 , 0' 2r 914 m (300Q f t)

C C T V  which included d a t a  t o  40r 
.r2134 m (700a f t )  e .­
m u 
.r m 
> ! .r 

>$ 1 U 

U 
6 C C T V  

C C T V  only  
on1 v 

v) 

W 
m 
m 

% O L  0
5 

(b) Ground speed. 

+J 
Lc E Averaged over  'c E Averaged over  l a s t  

2134 m (7000 f t )  & 130- 914 in (30QO f t )  
.r 

+Jm 
m .r 
.r E > 

U 
Q U 

U ' U U C C T V  
- k 151 U2 5')- k 15 only

U 	 S A A 
Q m r-, 
W I Q I I B E 

W 
m 
m ' 

%! 
$ 

,L 
1 55 

0 - . - I  
i i " ] JI ! , .  

5 4 5 

(c) Cross  range. 
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Figure 22.- Signal processing diagrams. 
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(d) Rate-of-climb- e r r o r  channel. 

(e) Cross-range channel. 

Figure 22.- Concluded. 
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